- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cheli, Alessandro (1)
-
Gowda, Shashi (1)
-
Iravanian, Shahriar (1)
-
Jain, Anand (1)
-
Ma, Yingbo (1)
-
Martensen, Carl Julius (1)
-
Rackauckas, Chris (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The majority of computer algebra systems (CAS) support symbolic integration using a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. The symbolic part of our method is based on the combination of candidate terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory) combined with rule-based expression transformations provided by the underlying CAS. The numeric part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the candidate terms. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.more » « less
An official website of the United States government
